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ABSTRACT 
A new fractional step method in conjunction with the finite element method is proposed for the analysis 
of the thermal convection and conduction in a fluid region expressed by the momentum equations, the 
equation of continuity and the energy equation. This paper focuses on the features of the present finite 
element method which gives a simple way of treating the Neumann boundary condition for the pressure 
Poisson equation. The applicability and effectiveness of the proposed scheme are illustrated through the 
numerical examples of the two-dimensional natural convection flow in enclosures with several Rayleigh 
numbers. 
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INTRODUCTION 

The numerical solution of the problems involving the flow of laminar natural convection in 
enclosures is an important and an interesting area not only in the computational fluid dynamics 
but also in many other engineering practices. There are many important engineering applications 
of the natural convection in enclosures, for instance, free convection in the cases of a passive 
solar room heated and cooled on two opposing vertical walls, heat transfer through double-glazed 
window, general circulation planetary atmospheres and so on. The behaviour of the natural 
convection flow has, however, received limited attention because of its three-dimensionality and 
the difficulty in the numerical simulation, e.g. the combination of the time-scale-difference of 
the flow fields and temperature fields. 

So far, the numerical solutions for this type of problem have been carried out successfully 
by the various techniques based on the finite difference method and have been done, principally, 
in rectangular or cubic enclosures1-4. However, there are still remaining some difficulties in 
their applications to the practical problems. The most notable one is the inconvenience of making 
FDM grid with accurately describing complex boundary shapes which often appear in the 
practical problems. Because of this, the use of the finite element method has been of interest in 
the computational simulations of the natural convection problems in recent years. Since the 
finite element method involves a remarkable feature in the treatment of the natural-boundary-
condition and provides a convenience of making much complex mesh configuration to the 
practical problems, it is apparent that the finite element method provides a workable approach 
to the solution of non-linear coupled physical phenomena. 

In this paper, the fractional step finite element method is applied to the thermal viscous fluid 
flow analysis. In recent years, several finite element analyses have already been presented based 
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on the fractional step method. The difficulty of the solution method for the problems of non-linear 
thermal flow arises from the continuity equation, i.e. the continuity equation does not include 
the pressure term in case of the incompressible flow. To overcome the difficulty, the fractional 
step method has been originated to obtain the pressure equation, which can solve the pressure 
field using the velocities computed by the previous time step in a certain implicit manner. The 
fractional step method consists of a two-step formulation. In the first step, the velocity fields 
are solved based on the velocities computed at the previous time point. Using the computed 
velocities, the pressure field can be computed. 

The formulation of the fractional step method previously published can be divided into two 
groups. One formulation employs that the fractional step formulation is applied after discretizing 
the governing equations. In this formulation, Donea5,6, Gresho7-9 and others are included. 
Contrary to this, the other formulation is that the governing equations are transformed into 
the fractional step formulation then discretization procedure is applied. Kawahara and his 
group10-13, Mizukami and Tsuchiya14 and others use this formulation. The most advantageous 
point of the second fractional step formulation is that the same interpolation function can be 
used for pressure and velocity fields. This fact considerably reduces the computational efforts. 
Thus, this paper employed the second fractional step method. However, it is important to note 
that the transformed equations can be coincident with the basic governing equations only if the 
proper boundary condition can be applied. 

The major emphasis of the present fractional step finite element method is the treatment of 
the Neumann boundary conditions for the pressure field. In the conventional fractional step 
method, the pressure gradients on boundaries ¶p/¶ni must be given exactly to solve the pressure 
Poisson equation. However, it is not straightforward to estimate the exact ¶p/¶ni on boundaries 
and because of this, it is difficult to give the exact Neumann boundary condition for the pressure 
field. The present fractional step finite element method provides a simple way of estimating 
¶p/¶tni by making use of the momentum equations. The Neumann condition to the pressure 
Poisson equation is transformed into the time-derivative term of velocity fields by the present 
method from which the computation of the pressure Poisson equation becomes easier than before. 
In the point of view of the situations cited in References 15-17, a new fractional step finite 
element method has been presented for solving laminar incompressible viscous fluid flow 
problems and many numerical solutions have been carried out by this method successfully and 
sufficiently15-17. In this paper, the authors present the application of the present finite element 
method to the numerical solution of non-linear coupled physical phenomena, such as the laminar 
natural convection due to the temperature-induced buoyancy in a finite two-dimensional 
enclosures i.e., cavity. The adaptability and applicability of the present scheme are obtained 
through several numerical examples. The computed results agree well with the physical 
phenomena. 

GOVERNING EQUATIONS 
Let Ω be a fluid flow domain which is surrounded by a piecewise smooth boundary Γ. The 
continuity, momentum and energy equations in a two-dimensional form, governing a laminar 
unsteady flow of a Newtonian fluid with the gravity acceleration acting in the vertical direction 
can be written as: 
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where t is time, x,y are the Cartesian coordinates, ρ is the density, u, v are velocities, p is pressure, 
μ is the dynamic viscosity, g is the gravity acceleration, cp is the principal specific heat at constant 
pressure, T is temperature, k is the thermal conductivity of fluid and * denotes the dimensional 
variables. 

In this paper, the fluid motion is further assumed to be laminar and the fluids under 
consideration are assumed to be incompressible. The dimensionless form of the governing 
equations in transient form with the Boussinesq approximation can be rewritten in the following 
forms. Here and henceforth, the equations are described using indicial notation and the 
summation convention for the repeated indices. 

where 

and σij is total stress tensor, dij is deviatoric stress tensor, eij is the rate-of-strain tensor, δij is 
Kronecker's delta function, a is thermal diffusivity, β is the coefficient of thermal expansion of 
the fluid, v is kinematic viscosity, ΔT* is temperature difference between hot and cold walls, L 
is characteristic length, Pr, Gr and Ra are the Prandtl, Grashof and Rayleigh numbers, 
respectively. 
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To complete the formulation of the governing equations, a set of general boundary conditions 
are specified as: 

In (12) and (14), ni is the direction cosines with respect to a set of axes, and the ^ denotes 
the function which is given on the boundaries. Moreover, the subsets Γ1, Γ2, Γ3 and Γ4 of Γ 
satisfy the following relations: 

and 

The superposed bar in (15) and (17) represents the total boundary enclosing the fluid and the 
energy transfer region, respectively. Notation θ in (16) and (18) denotes the empty set. 

The initial conditions for the non-linear coupled phenomena consist of specifying the value 
of velocity and temperature fields at the initial time: 

with the initial velocities u(0)
i(xi) satisfying the incompressibility condition: 

and 

DISCRETIZATION IN TIME 
The time discretization for the governing equations is described in this section. Let un

i and Tn 
be the known variables of the velocity and temperature fields at time tn where tn = tn-1+Δt 
(n=1,2,...). In the procedure of present fractional step method, the unknown velocity fields 
tn+1i which have been accelerated by the pressure at the advanced time level with satisfying the 
incompressibility constraint are calculated from the following equations: 

The boundary conditions for this system become: 

Because the pressure field pn + 1 is solved from the pressure Poisson equation by the fractional 
step method in advance, pn + 1 in the left-hand-side of (23) is assumed as an unknown variable at 
this stage. 



CONDUCTIVE-CONVECTIVE HEAT TRANSFER PROBLEMS 81 

After taking divergence from both sides of momentum equation (23) with satisfying the 
incompressibility condition such as the discrete continuum equation (24), the following pressure 
Poisson equation can be derived: 

To solve (27), the following boundary conditions must be imposed: 

Once the pressure field has been determined from (27), the velocities un+1i can be computed 
from the discrete momentum equation (23). 

Finally, the temperature field Tn+1 at all nodal points can be solved by employing the explicit 
Euler's first order scheme applied to the transport equation (7): 

The boundary conditions for this system are 

The computational procedure of the present fractional step method for the problems under 
consideration can be summarized as follows: 

(a) assume the initial condition for velocity, pressure and temperature fields, 
(b) solve pressure field pn+1 from (27), 
(c) solve velocity fields un+1i from (23), 
(d) solve temperature field Tn+1 from (30), 
(e) forward one time point and iterate from (b) to (d). 
The basic idea of the present fractional step scheme is that; if a solution is found to the 

equations of momentum, continuum and energy, then the pressure field must satisfy the pressure 
Poisson equation (27). In other words, if a solution can be found whose pressure field satisfy 
the pressure Poisson equation and whose velocity fields satisfy the momentum equations, a 
unique solution exists for the Navier-Stokes problem, and in that case, the incompressibility 
constraint such as the divergence free condition is valid in a flow region. 

FINITE ELEMENT METHOD 
Weighted residual formulations 

The weak formulation of the equations governing the coupled heat transfer problem is obtained 
by the method of weighted residuals. The scalar product of the weighting functions p*, u*i and 
T* with (27), (23) and (30), and performing an integration over the domain Ω give the following 
weighted residual equations: 
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where the line integral terms appeared in (33)-(35) are obtained by the divergence theorem 
through an integration by parts. 

The following problem in the weak formulation of the pressure Poisson equation still exists. 
Since there is the line integral term in the left-hand-side of (33), the exact pressure gradients 
¶pn+1/¶ni must be given along the boundary to get the pressure distribution exactly. In other 
words, the exact values of in (29) must be computed on the boundary, otherwise the resultant 
pressure field will not be correct at all and, consequently, a suspicious solution for the 
Navier-Stokes problem will be obtained. However, it is not easy to estimate the exact values 
of the Neumann boundary conditions for the pressure field in any cases, even in a simple case 
i.e., the fluid flow in a two-dimensional cavity, and those were treated as merely equal to zero 
in the conventional computations. 

The idea of the present fractional step finite element scheme is that the normal gradients of 
the pressure field ¶pn+1/¶ni can be calculated from: 

Substituting this equation into the line integral term in (33) properly, the weak formulation 
of (27) is reformulated as: 

The Neumann boundary conditions ¶pn+1/¶ni in (33) are transformed into the term as 
{(un+1i — uni)/Δt}•ni. This manipulation is useful for solving the Navier-Stokes problems in 
enclosures because the non-slip condition specified on walls gives zero to the line integral terms 
in (37) and this is the exact Neumann boundary condition for the transformed pressure Poisson 
equation. 

It is not straightforward to give the exact Neumann boundary conditions to (37) in case of 
the problems which have the open or artificial boundaries. However, it is still possible to estimate 
the approximate values of these conditions by proper computational techniques, e.g., iterative 
technique etc. (see, for example, Reference 12). 

The Neumann boundary conditions to (34) are not a problem for the closed cavity flow model. 
Also, in other cases, these will be given as usual. 

Finite element formulations 
Let the pressure, velocity and temperature fields be represented within an element by the 

interpolation function Nα as: 
p=Nαpα (38) 
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ui=Nαuαi (39) 
T = NαTα (40) 

and the corresponding weighting functions are: 
p* = Nαp*a (41) 

n*i = Nαu*ai (42) 
T* = NαT*α (43) 

where subscript a represents the nodal value of the αth node of the finite element in the ith 
direction. Substituting (38)-(43) into (37), (34) and (35), considering the arbitrariness of the 
weighting functions and rearranging the terms, the finite element formulations for the systems 
are represented as: 

where 

In (45) and (46), is the lumped coefficient matrix which is adding all terms of each row of 
the consistent coefficient matrix Mαβ and placing the diagonal terms with the resulted terms. 

NUMERICAL RESULTS 
The numerical example of the laminar incompressible viscous fluid flow problems involving the 
flow of natural convection due to the temperature induced buoyancy in a two-dimensional 
square cavity is discussed in this section. The square cavity with isothermal vertical walls at 
different temperature and horizontal adiabatic walls is shown in Figure 1. The boundary condition 
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for fluid flow is the non-slip condition at walls and the referential value of the pressure field is 
specified as equal to zero at the bottom centre. Computations were carried out for the fixed 
Prandtl number and several Rayleigh numbers using the uniform mesh divided by the four nodes 
bilinear isoparametric finite elements. The mesh used in this computation has 441 nodes and 
400 elements. 

The Prandtl number of the solutions is 0.71 and the computed results with Ra= 103,104, 105, 
106 and 107 are shown in Figures 2 to 6. Figure 7 shows the comparison of the vertical and 
horizontal velocity profiles at the middle of cavity on these Ra numbers. The computed results 
of Pr=5.12 with Ra = 105, 106 and 107 are shown in Figures 8 to 10. 

For the flow of low Rayleigh number Ra ≤ 103, the isothermal lines are almost linear everywhere 
inside such that T=x. For the lower Rayleigh numbers heat transfer is conduction dominated, 
while for higher Ra numbers the action is concentrated close to the boundaries. As the Rayleigh 
number increases, the convective effects become more apparent and the isothermal lines 
progressibly distorted. For a higher Rayleigh number flow Ra= 107, the boundary layer can be 
observed near the walls. The present fractional step finite element scheme clearly demonstrates 
these phenomena. 

CONCLUSIONS 
In this paper, a new fractional step finite element method has been presented for solving the 
conductive-convective heat transfer problems. The following remarks can be summarized 
through the numerical example. 

(1) In the time discretization of the governing equations, the pressure Poisson equation are 
employed by the fractional step manner. This makes the computational scheme extremely simple 
in algorithmic structure. 

(2) In the weak formulation of the pressure Poisson equation, the Neumann boundary 
condition of the pressure field has been transformed into the time-derivative term of the velocity 
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fields. This makes the computation much easier than before because it is not needed to estimate 
the special pressure flux on boundaries. 

(3) The natural convection due to the temperature induced buoyancy in a two dimensional 
square cavity has been solved as the numerical example. Computed results show the applicability 
and addaptability of the present finite element method. 

The calculations of the flow of high Rayleigh numbers, the flow governed by the turbulent 
model, the three-dimentional flow, etc. are future subjects for research from, the present method 
that can be extended. 
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